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LE'ITER TO THE EDITOR 

On the expectation value of particle coagulation times 
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London, Mile End Road, London El 4NS, UK 

Received 1 January 1990 

Abstract. It is shown that for a stochastic system of coalescing particles with coagulation 
probability independent of particle size, the expectation value of the time for the number 
of particles to change by a specified amount is identical with the time given by the solution 
of the relevant deterministic equation. For the stochastic problem an estimate i s  made of 
the standard deviation of the coagulation time. A brief discussion is given of how these 
results are modified when particle coalescence and removal occur simultaneously. 

Two approaches have conventionally been used for the quantitative discussion of 
coagulation phenomena. The first, pioneered by Smoluchowski, assumes a system 
containing an infinite number of particles and formulates the deterministic equation 
governing the temporal development of n ( u ,  t ) ,  the number density of particles with 
volume U. This equation takes the form 

a n l a t  = - P( U, u - U )  n ( U ) n ( u - U )  du - n ( U )  P( U, U )  n ( U )  du ( 1) 

where P ( u ,  U )  is the relevant coagulation kernel. Although equation (1) cannot be 
solved analytically for general P, it can be tackled for the case of constant P, which 
is a good approximation for Brownian coagulation. Letting X( t )  ( = 5," n( U, t )  du) be 
the total number of particles per unit volume, it is then readily shown that for constant 
P, equation (1) leads to 

; loL2 lo= 

The second approach to coagulation has been to consider a system containing in 
total a finite number of particles N and to deal with this stochastically, formulating 
a master equation whose solution gives the probability of there being a specified number 
of particles in each of the allowed volume states; from this probability the expectation 
value of the number of particles in each such volume state (n(u)) may be obtained. 
Now, in the limit as the number of particles tends to infinity it is to be expected on 
physical grounds that (n(u)) should tend towards the value of n ( u )  as given by the 
deterministic approach sketched above and various attempts have been made to show 
this to be so. Among these are Hendriks et a1 (1985) who deal with the case of 
P = constant (apart from other specific forms of P )  and Donoghue (1982) who tackles 
the problem in the context of gelation theory. Other authors dealing with finite systems 
of particles for the case of constant P include Williams (1979) and Arcipiani (1980). 
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The aim of the present communication is to calculate the time t for the total number 
of particles N to change by a specified amount and we do this using in turn the 
deterministic and stochastic approaches sketched above. We confine our attention to 
the case of a constant coagulation kernel and proceed to show that the expectation 
value of t when the problem is treated stochastically is identical to the value of t given 
by the deterministic approach and that this is so, not only as N + CO (as would be 
expected), but for all values of N. In addition, we are able to calculate CT, the standard 
deviation of t, in the stochastic approach. 

To develop the stochastic approach we begin by noting that since the coagulation 
of the particles forms a discrete Markov process, the probability P?(T) of a specified 
pair not coalescing after time T will satisfy 

Pz( T + T’) = P2( T)  Pz( T’) 

pl( 7 )  = exp( - K T )  

(3) 

(4) 
for some constant K .  It follows that the probability of there being no collisions after 
time T for a set of N particles is given by 

( 5 )  

We can now derive the corresponding deterministic equation for the system by noting 
that if N ( t )  is the particle number at time t ,  then the change 6N after time 6t  is given 

whence 

PN(7)  = exp[ - i K N (  N - l ) ~ ] .  

by 
8N=-[PN(O)-P, , (8r)]  

since in each collision N decreases by unity. 

yielding for N >> 1 ,  

d N l d t  = -;KN’ 

Thus 

If V is the total volume of space occupied by the particles, we note that equation (8) 
becomes identical with equation ( 2 )  on letting N = KV and K = P /  V. This is, of 
course, to be expected since both equations reflect a deterministic approach to essen- 
tially the same system, although their derivation has followed somewhat different paths. 
The solution of equation (8) is clearly 

(9) 
where n is the initial number of particles at t = O .  

We now return to the stochastic treatment of the problem. Since PN(7) is given 
by equation (51, it follows that the expectation value of the time interval r,, for which 
exactly p particles exist is given by 

N - l -  , - I  = !&r 

Thus the expectation value of the total time for the number of particles to decrease 
from n to N is 

n 

( t ) =  
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It is clear that this relation is identical to the solution ( 9 )  of the deterministic equation 
if t in the latter is replaced by its expectation value ( 1 ) .  Further, the standard deviation 
U,, associated with the time interval tp  is given by 

4 
K 2 p 2 ( p  - 1 ) ’  

U ; =  -loz T ~ ( ~ P , / ~ T )  d7-(tp)’= 

Since the time intervals tp are uncorrelated, it follows that the standard deviation (+ 

associated with the total time t is given by 

The summation in equation ( 1 3 )  can be estimated by the Euler-Maclaurin summation 
formula (Abramowitz and  Stegun 1965), which yields 

and  hence 

Equations ( 1  1 )  and ( 1 5 )  give 

cr- I [ n 2 +  N n +  ”]” 
( t )  3 N n ( n - N )  

Thus for n >> 1 ,  u/(t) will initially be close to unity (for n - N - 1 )  before decreasing 
as ( n  - N ) - ” *  with the passage of time and  decreasing N. U / (  t )  then passes through 
a minimum [at N / n  = f(&- l ) ]  before finally increasing as N-”‘  when N approaches 
one. That u/(t) is close to unity for n - N - 1 and for N - 1 is physically due to the 
fact that for both of these situations ( I )  is essentially governed by relatively few 
coagulations. 

Finally, we consider briefly the situation when in addition to coagulation there 
exists a removal mechanism (for example, deposition of particles on the walls of the 
container) whose effectiveness is assumed to be independent of particle size. Then the 
probability of a single particle not being removed after time T is 

o( 7) = exp( - R T )  

for some constant R, and thus the probability of a set of N particles remaining 
unchanged after time t when both coagulation and removal are operative is given by 

(17 )  

Following the approach developed earlier, expression ( 17) gives the deterministic 
equation for the system in the form 

d N / d t  = - $ K N ’ -  R N  ( 1 8 )  

S N  ( T) = exp[ - ( $ K N (  N - 1 )  + R N ) . r ] .  

with solution 

r=- ln(  1 l + a N - ’  ) 
R l + a n - l  
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where a = 2 R /  K. On pursuing the stochastic treatment of the problem along the lines 
outlined above, it transpires that 

It is clear that for a # 0 the right-hand side of (19) is different from the right-hand 
side of (20) and thus the introduction of a removal mechanism spoils the ( t )  = t equality 
which applies for coagulation acting alone. However, by first performing the summation 
in (20) using the Euler-Maclaurin summation formula, and then considering the form 
taken by t (19) and ( t )  (20) for N, n >> 1 it may be shown that, in this limit, t = ( t ) .  

I should like to express my thanks to the referee for suggested modifications concerning 
the relationship of this paper to earlier work. 
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